Existence of Infinitely Many Distinct Solutions to the Quasirelativistic Hartree-Fock Equations
نویسندگان
چکیده
equations forN-electron Coulomb systems with quasirelativistic kinetic energy √ −α−2Δxn α−4 − α−2 for the nth electron. Moreover, we prove existence of a ground state. The results are valid under the hypotheses that the total charge Ztot of K nuclei is greater than N − 1 and that Ztot is smaller than a critical charge Zc. The proofs are based on a new application of the Fang-Ghoussoub critical point approach to multiple solutions on a noncompact Riemannian manifold, in combination with density operator techniques.
منابع مشابه
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملSolutions of the Multiconfiguration Equations in Quantum Chemistry∗
The multiconfiguration methods are the natural generalization of the well-known Hartree-Fock theory for atoms and molecules. By a variational method, we prove the existence of a minimum of the energy and of infinitely many solutions of the multiconfiguration equations, a finite number of them being interpreted as excited states of the molecule. Our results are valid when the total nuclear charg...
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
The Hartree-Fock Theory for Coulomb Systems
For neutral atoms and molecules and positive ions and radicals, we prove the existence of solutions of the Hartree-Fock equations which minimize the Hartree-Fock energy. We establish some properties of the solutions including exponential falloff.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009